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Motivation: Computational Cardiology

Computational Cardiology: Developing multiscale digital twins of human hearts to
non-invasively predict disease progression and therapy response [niederer, Sacks, Girolami, and Willcox, 2021]

Single cell scale Tissue scale Organ scale

» Figure
credit:
Marina
Riabiz

Example (Heartbeats and arrhythmias)
@ Whole-organ heartbeats are coordinated by calcium signaling in heart cells
@ Dysregulation known to lead to life-threatening heart arrhythmias
@ Goal: Model impact of calcium signaling dysregulation on heart function [Campos,

Shiferaw, Prassl, Boyle, Vigmond, and Plank, 2015, Niederer, Lumens, and Trayanova, 2019, Colman, 2019]
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Motivation: Computational Cardiology
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Inferential Pipeline (Impact of calcium signaling dysregulation on heart function)

@ Estimate unknown calcium signaling model parameters from patient data
© Capture uncertainty by sampling many likely parameter configurations

e Run Markov chain Monte Carlo (MCMC) to (eventually) draw sample points
from the posterior distribution IP over unknown parameters
o May require millions of sample points to adequately explore target distribution P

© Propagate uncertainty by simulating whole-heart model for each configuration

e Problem: Each simulation requires thousands of CPU hours!

Questions: Can we accurately summarize P using many fewer points? If so, how?
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Distribution Compression

Goal: Accurately summarize a distribution P using a small number of points
Standard solutions

@ i.i.d. sampling directly from P

@ MCMC with Markov chain converging to P
Benefits: Readily available and eventually high-quality

@ Provide asymptotically exact sample estimates P, f = %2?21 f(x;) for intractable
expectations Pf = Ex p[f(X)]
Drawback: Samples are too large!
o Typical integration error P, f — Pf = ©(n~'/?): need n = 10000 for 1% error
@ Prohibitive for expensive downstream tasks and function evaluations

Idea: Directly compress the high-quality sample approximations P,
@ Reduces general problem to approximating empirical distributions
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Distribution Compression

Question: How do we effectively compress an empirical distribution P,,?
Standard solutions '

@ Uniform subsampling / i.i.d. sampling

e Standard thinning: Keep every t-th point

Drawback: Large loss in accuracy, worst case integration error = ©O(/t/n)
e Compression from n to \/n points increases error from ©(n~'/2) to O(n~/4)

Question: Can we do better?

Minimax lower bounds for worst-case integration error to P
e Q(n~'/2) for any compression procedure returning /7 points (phiips and i 2020
° Q(nil/Q) for any function of n i.i.d. points from P [reistikhin, Sriperumbudur, and Muandet, 2017]
o O(n2log ™ n) for best \/n points if P = Unif([0, 1]%) novek and woariakous, 2010

This talk: Introduce a practical compression strategy — kernel thinning — that matches
these lower bounds up to log factors, even for nonuniform and unbounded P
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Problem Setup

Given:
e Input points S, = {z1,...,7,} C R? with empirical distribution P,, = %Z?:l O,
o Pre-generated by any algorithm (i.i.d. sampling, MCMC, quadrature, kernel herding)

o Target output size s (e.g., s = /n for heavy compression)

Goal: Return coreset Sy C Sy with [Soue| =5, Q = %er&m 8z, and o(s~1/?)
(better-than-i.i.d.) worst-case integration error between P, and Q
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Maximum Mean Discrepancies

Goal: Return coreset Sou C Siyy with |[Soue| =5, Q=13 o 8, and o(s™/?)
worst-case integration error between P,, and Q

Quality measure: Maximum mean discrepancy (MMD) (cretton, Borguardt, Rasch, Schsikopf, and Smola, 2012]
MMDy(P,,, Q) = sup [P,.f — Qf]

Il <1
@ Measures maximum discrepancy between input and coreset expectations over a

class of real-valued test functions
@ Parameterized by a reproducing kernel k: any symmetric (k(z,y) = k(y,)) and
positive semidefinite function

1 2
ian: k — e allm—ullz Iti ic: k =—1_
o Gaussian: k(z,y) =e" 2 , Inverse multiquadric: k(z,y) (14 [|lz—yl13)!/2

@ Metrizes convergence in distribution for popular infinite-dimensional kernels (e.g.,
Gaussian, Matérn, B-spline, inverse multiquadric, sech, and Wendland)
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Square-root Kernels

Definition (Square-root kernel)

A reproducing kernel k,; is a square-root kernel for k if
k(l’, y) = fRd krt (J:a z)krt<y7 Z)dZ

k(z,y) = k(z—y) k(2) Square-root ki
2 2
Gaussian(o) GXP<— HQC,H22) Gaussian (%)

. y_d Ly
Matérn(v,7) (V)" 2 K, _a(7llzll,) ~ Matém(z,7)

v

B-spline(28+1)  [[}_, @211 14(z) B-spline(3)

Theorem (L coresets for k4 are MMD coresets for k [Dwivedi and Mackey, 2024])

O(||Ppkrt — Qkre || o) Compact support k¢, P,

MMDy, (P,,, Q) =
k(Pn, Q) {(’)(HIP’nkrt—ritﬂoolog(m)szrl) Subexponential ki, P,
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Kel’nel Th'nnlng [Dwivedi and Mackey, 2024]

@ Initialization: KT-SPLIT
e Partitions input Sy, into balanced candidate coresets, each of size s

Input | | 1 1 1 1
mnpomtS) 000 0000060
Kernel Halvmg \ / / / \ \
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S0 (% points) .

. After m Kernel Halving rounds .
Output
) (2L o ceeee
Sm,1) (2’” points) . .
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Kel’nel HalV'ng [Dwivedi and Mackey, 2024]

Goal: Split S, into two balanced coresets S, S, ;. of equal size
e Balance: Qk, ~ Qk, < P,k ~ Qk,, for Qky = m ZwESéut kyi(z,-)

Uniformly random halving: ||P,k, — Qkyl||_ = SZ(%) with high probability

Kernel halving: Check for balance before assigning points to coresets
@ Hilbert space generalization of self-balancing walk of Alweiss, Liu, and Sawhney [2020]
@ Start with empty coresets Sout, S\
@ Assign input points (x,2) = (x1,22), ..., (Zn_1,%,) to coresets two at a time:
@ Try adding  to Sout and 2’ to ;. and record aneads = [|Qkyrt — Q'kylfy
@ Try adding 2’ to Sou and = to Sp, and record auails = [|Qkrp — Q'kyt |y,
© Final assignment: flip coin biased toward the more balanced option (the smaller «)

o Theorem: [P,k — Qky|| = O(¥1%M) with high probability [use md vacier, 2026

n
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Kel’nel Th'nnlng [Dwivedi and Mackey, 2024]

@ Initialization: KT-SPLIT

e Partitions input Sy, into balanced candidate coresets, each of size s
Input 1

Sutipons) @ @ @ ©® © © © © © © © O
v
‘ n
Sa t;points) e o e o e O
!
S@1) (% points) . . .
. After m Kernel Halving rounds .
.Output :
Sm.1) (%points) . . cee e
o Non-uniform randomness ensures ||P, ki — Qk.||,, small after each halving round
O( IOTgL”) Compact support k¢, P,
@ Theorem: MMDy =

dat1 . with high prob.
O(% Vioglogny - §ybexponential ke, Py,

1 .
when s = /n vs. Q(n™ 1) for i.i.d. coreset [Dwivedi and Mackey, 2024]
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Kel’nel Th'nnlng [Dwivedi and Mackey, 2024]

@ Initialization: KT-SPLIT

e Partitions input Sj, into balanced candidate coresets, each of size s
o Non-uniform randomness ensures [P, k. — Qk.|| ., small after each halving round

o Thm: MMDy = (’Sd(s’l) for subexponential k¢, P, vs. Q(s*%) for i.i.d. [Dwivedi and Mackey, 2024]
@ Refinement: KT-SWAP

o Selects candidate coreset closest to Si, in terms of MMDy
e lteratively refines the coreset by replacing each coreset point in turn with the best
alternative in Sy, as measured by MMDy

Complexity
@ Time: dominated by O(n?) kernel evaluations
o Reduces to O(n log® n) for s = y/n using Compress++ of shetty, Duwivedi, and Mackey [2022]
@ Space: O(min(nd, n?))
o Reduces to O(y/ndlogn) for s = y/n using Compress—+-+
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Kernel Thinning vs. i.i.d. Sampling: Mixture of Gaussians
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Kernel Thinning vs. i.i.d. Sampling: Mixture of Gaussians
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Kernel thinning (KT) improves both rate of decay and order of magnitude of

MMDy (P, Qkr)

o P= > N(py L), d =2
® k(z,y) = exp(— 5|z — yll;) with 0 = 2d
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Kernel Thinning vs. i.i.d. Sampling: Higher Dimensions
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Kernel thinning (KT) improves both rate of decay and order of magnitude of
MMDy (P, Qgr) even for high dimensions and small sample sizes

o P =N(0,I,)

o k(x,y) = exp(—guzlz — yl2) with o2 = 2d
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Kernel Thinning vs. Standard MCMC Thinning

Posterior inference for systems of ordinary differential equations (ODEs)
@ P = posterior distribution of coupled ODE model parameters given observed data
e Goodwin model of oscillatory enzymatic control (d = 4) (coodwin, 1965]
@ Lotka-Volterra model of oscillatory predator-prey evolution (d = 4) (otks, 1925, Volterra, 1926]
@ Hinch model of cardiac calcium signalling (d = 38) [Hinch, Greenstein, Tanskanen, Xu, and Winsiow, 2004]

e Downstream goal: propagate model uncertainty through whole-heart simulation
o Every sample point discarded via compression = 1000 CPU hours saved

MCMC input points [Riabiz, Chen, Cockayne, Swietach, Niederer, Mackey, and Oates, 2021]
e Gaussian random walk (RW), adaptive RW (adaRW) {Haario, Saksman, and Tamminen, 1099]
o 2 weeks of CPU time to generate each RW Hinch chain of length 4 x 10°
@ Metropolis-adjusted Langevin algorithm (MALA) roberts and Tweede, 1096]
@ Pre-conditioned MALA (pMALA) [Girolami and Calderhead, 2011]
@ Discarded burn-in and standard thinned to form P,
o k(z,y) = exp(—5 |z — y|3) with median heuristic 2 (s, skiteum, and Kanagaws, 2017
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Something's Wrong

MCMC
,4| --== seed 1
I:: = seed 2
:"l: prior
Problem: The Hinch Markov chains haven't mixed!

Solution: Use a more diffuse tempered posterior P for faster mixing

Problem: Tempering introduces a persistent bias g

e MCMC points P,, will be summarizing the wrong distribution P

Question: Can we correct for such biases during compression?

Mackey (MSR)
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Compression with Bias Correction

Question: Can we correct for distributional biases in P, during compression?

@ e.g., Biases due to off-target sampling, tempering, approximate MCMC, or burn-in

Difficulty: P,, alone is insufficient; need to measure distance to the true target P
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Measuring Distance to P

Quality measure: MaXimum mean dlscrepancy (MMD) [Gretton, Borgwardt, Rasch, Schélkopf, and Smola, 2012]
MMDy (P, Q) = ”st Pf—Qf| = V(P x Pk + (Q x Qk — 2(Q x P)k
flle<1
Problem: Integration under PP is typically intractable!
= Pk and MMDy (P, Q) cannot be computed in practice for most kernels

Idea: Only consider kernels kp with Pkp known a priori to be 0
@ Then MMD computation only depends on Q!
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Kernel Stein Discrepancies

Idea: Consider MMDy, with Pkp known a priori to be 0

Kernel Stein discrepancy (KSD)
[Chwialkowski, Strathmann, and Gretton, 2016, Liu, Lee, and Jordan, 2016, Gorham and Mackey, 2017]

e kp(z,y) = Zj 1 p(x)p(y)vx]vyj( p(x)k(x,y)p(y)) [Oates, Girolami, and Chopin, 2017]
o [P has differentiable Lebesgue density p
e k is a bounded base kernel with bounded continuous derivatives
@ Pkp = 0 whenever V logp is integrable [Gorham and Mackey, 2017]
@ Depends on P through V log p: computable when normalization constant unknown
= Kernel Stein discrepancy MMDy, (P, Q) is computable!

Theorem (KSD controls convergence in distribution

[Gorham and Mackey, 2017, Chen, Barp, Briol, Gorham, Girolami, Mackey, and Oates, 2019])

Consider the base kernel k(z,y) = (c? + ||T'(x — y)||3)~/2 for any ¢ > 0 and positive
definite I". If P has strongly log concave tails and Lipschitz V log p, then Q; = P
whenever MMDy, (P, Q) — 0.
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Stein Kernel Thinning: Stein Thinning + Kernel Thinning

(1) Stein thinning: Greedily minimize KSD using points from S, = {z1,...,2,}
[Riabiz, Chen, Cockayne, Swietach, Niederer, Mackey, and Oates, 2021]
@ Choose initial approximation P; = 4, with

Y1 € argmin, g MMDy, (P, 6,) = argmin, g, kp(y,y)

o lteratively construct P, = L 3" | 5, with

Yn € argmin, g MMDy, (P, "T_llP’n_l + %5y)
. n—1
= argmlnye&n klP(% y) + 2 Zi:l kP(yia y)
@ Same point z; can be selected multiple times

@ Runtime = O(n?) after n steps

(2) Kernel thinning: Compress debiased approximation IP,, to obtain coreset Q
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Stein Kernel Thinning Guarantees

Theorem (Stein KT guarantee [Li, Dwivedi, and Mackey] )

MMDy,, (P,Q) < inf MMDy, (P, 3% widy,) + Og(n~?)

wWEA,_1

with high probability for s = \/n and slow-growing inputs and kp.

Takeaway: Stein KT performs nearly as well as best simplex reweighting of S,
= Nearly as well as Markov chain with burn-in removed!
= Nearly as well as off-target sample after optimal importance sampling reweighting!
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Stein Kernel Thinning Guarantees

Takeaway: Stein KT performs nearly as well as best simplex reweighting of S,
= Nearly as well as Markov chain with burn-in removed!

= Neary as well as off-target sample after optimal importance sampling reweighting!

Theorem (Stein KT corrects off-target sampling [Li, Dwivedi, and Mackey])

If Sy, drawn i.i.d. from P with tails no lighter than P =

MMDy, (P,Q) = 5d(n_1/2) in probability,
for s = \/n and slow-growing kp.

@ Result extends to geometrically ergodic Markov chains targeting P
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Stein KT in Action: Correcting for Burn-in

Goodwin model of oscillatory enzymatic control

Coordinate 1

Standard Burn-in Removal Stein Kernel Thinning
0.0 0.0
-0.2 ~ 02
)
-0.4 é -0.4
§
0.6 -0.6
“‘;) .
-0.8 —0.8 e
0 1 2 3 4 5 0 1 2 3

Coordinate 2

Coordinate 2

@ First two coordinates of P-MALA MCMC output

o Before selecting , burn-in removal uses 6 Markov chains to discard burn-in

@ Stein KT identifies the same high-density region with 1 chain
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Stein KT in Action: Correcting for Burn-in

Goodwin model of oscillatory enzymatic control
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Stein KT outperforms standard burn-in removal in terms of KSD and energy distance
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Stein KT in Action: Correcting for Tempering

Hinch model of cardiac calcium signalling: Tempering improves mixing
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Stein KT in Action: Correcting for Tempering

Hinch model of cardiac calcium signalling

104<
."--......__ -fl- Standard Thinning (Tempered)
1031 2__. .. -@- Standard Thinning (Untempered)
*~*\. ."."". —A - Stein Kernel Thinning
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Coreset Size s

100

@ Untempered standard thinning yields poor summary due to poor mixing
@ Tempered thinning without bias correction is even worse (due to tempering bias)
@ Tempering + Stein KT bias correction improves approximation to P
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Conclusions

Summary

@ New tools for summarizing a probability distribution more effectively than i.i.d.
sampling or standard MCMC thinning

@ Kernel thinning compresses an n point summary into a y/n point summary with
better-than-i.i.d. approximation error

@ Stein kernel thinning simultaneously compresses and reduces biases due to
off-target sampling, tempering, or burn-in

@ Compress++ speeds up thinning algorithms without ruining their quality

Kernel Thinning and Compress++ Stein Thinning and Stein KT
o arxiv.org/ aES/ 21228?832 Paners: | APiv-org/abs/2005.03952
apers: | arxiv.org/abs/2110.015 PEIS Y arxiv.org /abs/2404.12290

arxiv.org/abs/2111.07941

Package: github.com/microsoft/goodpoints

Mackey (MSR) Advances in Distribution Compression June 26, 2025 29/29


https://arxiv.org/abs/2105.05842
https://arxiv.org/abs/2110.01593
https://arxiv.org/abs/2111.07941
https://arxiv.org/abs/2005.03952
https://arxiv.org/abs/2404.12290
https://github.com/microsoft/goodpoints

Genel’allzed Kernel Th'nnlng [Dwivedi and Mackey, 2022]

Question: Do you really need a square-root kernel?
Q@ KT-SPLIT with target kernel k yields

o Similar or better MMD guarantees for smooth kernels (like Gaussian, IMQ, & sinc)
and kernels with fast eigenvalue decay [Carrell, Gong, Shetty, Dwivedi, and Mackey, 2025]
Vlog s

o Dimension-free O(¥=%%) single-function integration error for any k and P

@ KT-SPLIT with fractional power kernel k, yields

o Improved MMD for kernels without k; (like Laplace and non-smooth Matérn)
© KT-sPLIT with k + k,, yields all of the above simultaneously!

o We call this kernel thinning+ (KT+)
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Distribution Compression in Near-linear Time (shetty, Dwivedi, and Mackey, 2022

Question: Can we speed up thinning algorithms without ruining their quality?
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Compress++ reduces n? runtime to n log® n, applies to any halving algorithm, and
inflates error by at most a factor of 4
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COm preSS Then Test [Domingo-Enrich, Dwivedi, and Mackey, 2023]

Power (1 - Type II error)

Power (1 - Type II error)
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Compress Then Test (> above) yields powerful kernel tests in near-linear time
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COm preSS Then Attend [Carrell, Gong, Shetty, Dwivedi, and Mackey, 2025]

Attention Algorithm Top-1 Accuracy (%) Layer 1 Runtime (ms) Layer 2 Runtime (ms)

Exact 82.55 &+ 0.00 18.48 + 0.12 1.40 4+ 0.01
Performer 80.56 £+ 0.30 2.54 £ 0.01 0.60 £ 0.01
Reformer 81.47 £ 0.06 7.84 + 0.03 1.53 £ 0.01

KDEformer 82.00 £ 0.07 5.39 £ 0.03 2.28 + 0.03
Scatterbrain 82.05 £ 0.08 6.86 + 0.02 1.55 + 0.03
Thinformer (Ours) 82.18 + 0.05 2.06 + 0.01 0.54 + 0.00

uer | | value

dHeryy key, key, --- key, !

queryy | | | values

Attention = softmax

query,, value,,

nxn

Thinformer provides a fast, high-quality approximation to attention in Transformers
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COm preSS Then SOI’t [Carrell, Gong, Shetty, Dwivedi, and Mackey, 2025]

Full Train Loss Test Accuracy Full Train Loss Test Accuracy
0.339 4 82.4 0.339 4 2.4
03381 \‘\"\ A /\ 82.39 0.338 823
¥ v \ '
0.337 1 82.24 0.3374 2.2 p
CD-GraB: SBW \/\/ | \/ v \/
0.336 82.14 03364 —— RR = sl
—— LKH-SGD
0.335 82.0 03351 —— CD-GraB: Greedy 82.0
6 1‘0 ?‘U 3‘0 '1b Sb (‘J 2;}(] 4;)(] ()"JU 8(‘)0 1 U‘UU 1 2YUU (‘) 21‘)(} -’ll‘)U 0(')0 B(‘]U 1 ()‘(JU 1 '2'()(]
Epochs Epochs Seconds Seconds
Inspired by gradient balancing ( ) [Cooper, Guo, Pham, Yuan, Ruan, Lu, and De Sa, 2023],

Kernel Halving SGD accelerates model training by reordering stochastic gradients
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Conclusions

Summary

@ New tools for summarizing a probability distribution more effectively than i.i.d.
sampling or standard MCMC thinning

@ Kernel thinning compresses an n point summary into a y/n point summary with
better-than-i.i.d. approximation error

@ Stein kernel thinning simultaneously compresses and reduces biases due to
off-target sampling, tempering, or burn-in

@ Compress++ speeds up thinning algorithms without ruining their quality
o CTT, Thinformer, and KH-SGD accelerate testing, Transformers, and training

github.com /microsoft/goodpoints
Code: g?thub.com/microsoft/thinformer
github.com /microsoft /deepctt

github.com /microsoft /khsgd
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Future Directions

Many opportunities for future development
@ Value of swapping
e KT-SWAP refinement stage typically leads to significant quality improvements over
KT-SPLIT alone. Can we establish stronger guarantees for KT-SWAP?
© Faster debiasing
o Low-rank SKT [Li, Dwivedi, and Mackey] matches Stein KT guarantees in O(n!?) time.
Can we improve runtime further?
© Weighted compression
e For applications that support weights, can we establish stronger guarantees for
weighted coresets?
e e.g., weighted Stein Recombination and Stein Cholesky coresets can match SKT
guarantees with as few as s = polylog(n) points instead of s = /7 [Li, Dwived, and Mackey].
@ Other metrics

o For which other metrics is (significantly) better-than-i.i.d. compression achievable?
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Related Work on MMD Coresets

Uniform distribution P on [0, 1]%: L? discrepancy MMD, s points
- d-1
@ Quasi-Monte Carlo (chen, skriganov, et al, 2002: O(s711log = s)
() On“ne Haar Strategy [Dwivedi, Feldheim, Gurel-Gurevich, and Ramdas, 2019]: O(S_l 10g2d S)

1
Order s~z MMD coresets for general P
(] lld [Tolstikhin, Sriperumbudur, and Muandet, 2017], geometrica”y el’godic MCM C [Dwivedi and Mackey, 2024]
*] Kernel herd|ng [Chen, Welling, and Smola, 2010, Lacoste-Julien, Lindsten, and Bach, 2015], Ste|n pOIntS MCM C [Chen,

Barp, Briol, Gorham, Girolami, Mackey, and Oates, 2019], Greedy S|gn SeleCtlon [Karnin and Liberty, 2019]

Finite-dimensional linear kernels on R% O(v/ds'log®® s), s points
@ Discrepancy construction [Harey and samadi, 20141: do€s not cover infinite-dimensional k

Unknown coreset quality
@ Super-sampling with a reservoir [paige, sejdinovic, and Wood, 2016); COreset quality not analyzed
@ Support points [Mak and Joseph, 2018]
o Optimal s coreset has o(s_%) energy distance MMD but no construction given

e Practical convex-concave procedures not analyzed or shown to be optimal
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KT-SPLIT

KT-SPLIT partitions the input S, recursively, first dividing the input sequence in half,
then halving those halves into quarters, and so on
@ Runs online: after 7 input points processed have output coresets of size QLm
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KT-SPLIT

Input
Sulipoints @ @ @ @ @

[
v
ernel Halvin,

v
s (% points) . . .
¥
\ \
o

v
S0 (% points) o

o]

: After m Kernel Halving rounds .

Output
S(m.1) (zn_mpoims) . . .....

Each output coreset S(™%) is the result of repeated kernel halving
@ On each halving round, remaining points are paired, and one point from each pair
is selected using a new Hilbert space generalization of the self-balancing walk of

Alweiss, Liu, and Sawhney [2020]

@ Selection rule ensures that P, k;; — Qk,; remains small with high probability
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Kernel Halving with a Self-Balancing Hilbert Walk

Algorithm: Self-balancing Hilbert Walk [Dwivedi and Mackey, 2024]

Input: sequence of functions (fl)fﬁ in Hilbert space H, threshold sequence (ai)?ﬁ
d)o —~0eH
fori=1,2,...,n/2 do
a; < (Yi—1, fi)3y // Compute Hilbert space inner product
if |O£Z| > a;
Vi i1 — fi-ai/a; /] We choose a; to avoid this case with high probability
else:

n; <= 1 with probability 1(1—a;/a;) and 1; < —1 otherwise

Vi < i1+ fi
end

return 1, /5, sum of signed input functions  // 1, /5 = Z:‘ﬁ n; fi with high probability
© Kernel Halving: If f; = ky(z2i—1,) — ket (x2i, ), half of input points Syt given sign 1
= %wn/g = Ppkyt — Qky with Q = %ersout .
@ Balance: If H = k;; RKHS, P,k (7) — Qky () is O(y/log(n)/n) sub-Gaussian, Yz
o In contrast, i.i.d. signs n; give P, ki (z) — Qky(x) = Q(1//n)
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Why the Square-root Kernel k,?

Theorem (L coresets for (k.,P,,) are MMD coresets for (k,P,,) [Dwivedi and Mackey, 2024])

For any scalars R,a,b > 0 with a +b =1, we have
MMDy(Py, Q) < vaR? - [|Pukey — Qkeel, + 27, () + 2I[K||2,- max{7s, (bR), o (bR)}
for vg = 744 /T(d/2 + 1)/2.

o L error: ||P,ky—Qkyll,, £ sup,era [Pk (v) — Qi (2)]
e Tail decay of (P,,Q,ky): 7, (R) = P,(| X]||, > R)
e Effective radius: Want 7, (aR), e, (bR), 70(bR) = (9(\/%;)
o R = 0O(1) for compact support, R = O(log(n)) for sub-exponential decay
e When (P, Q, k) are compactly supported, MMDy(P,,, Q) = O(||P,ky —Qky| )
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L> Coresets from Kernel Halving

Theorem (L guarantees for kernel halving [Dwivedi and Mackey, 2024])

With high probability,
© Kernel halving yields a 2-thinned L*>° coreset Q%){ satisying
[Bakee — Qoo < [lkoell s - 200, (Pr)
© Repeated kernel halving yields a 2"-thinned L>° coreset Qﬁ?ﬁ) satisfying
1nlese — Qi Koeloe < (el - 2900, ()

e My, (P,) = O(Vlogn) for compactly supported (P, k,;) and O(logn) in general
e With m = Llog,(n) rounds, yields \/n points with O(n~zlog(n)) L* error
o An equal-sized i.i.d. sample has Q(’rf%) L> error

e Near-optimal: any procedure outputting \/n points must suffer Q(n*%) L error
for some P,, [Phillips and Tai, 2020, Thm. 3.1]
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MMD Coresets from Kernel Thinning

Theorem (MMD guarantee for kernel thinning [Dwivedi and Mackey, 2024])

Kernel thinning returns a coreset Qr with \/n points satisfying, with high probability,

n

42
MMDy (P, Q) = § O(Uoen) = Vicgloeny g b Gaussian (P, ky) (e.g., Gaussian k)

7n

d+1
O(Ueen) 2 Viosloen) - g o b-exponential (P, ky) (e.g., Matérn k)

7n

O(4/en) for compact support (P, k) (e.g., B-spline k

o An equal-sized i.i.d. sample has Q(n 1) MMD

d-1
@ Sub-exponential guarantees resemble the classical O(%) quasi-Monte Carlo

error rates for uniform IP on [0, 1]¢ but apply to more general distributions on R¢

@ See the paper for non-asymptotic bounds with explicit constants and 57 points
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Related Work on L°° Coresets

1 .
L> coresets for P,,: o(n~1) L™ error, y/n points
@ Series of breakthroughs due to [Joshi, Kommaraji, Phillips, and Venkatasubramanian, 2011, Phillips,
2013, Phillips and Tai, 2018, 2020, Tai, 2020]

Best known L guarantees (for coreset of size \/n)
e Phillips and Tai [2020]: O(vdn~2+/logn) error, Q(n*) time, Q(n?) space
e Tai [2020] (Gaussian k): O(2%n~2/log(dlogn)) error, Q(max(d*, n*)) time
@ Both are offline and require rebalancing after approximate halving steps
o This work: O(v/dn~zlogn) error, O(n2) time, O(nd) space, online, exact halving

o Sub-Gaussian (ky,P): O(Vdn~ éx/lognloglogn) error
o Compact support (ky,P): O(vVdn~ 2\/logn) error
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Distribution Compression in Near-linear Time (shetty, Dwivedi, and Mackey, 2022

Question: Can we speed up thinning algorithms without ruining their quality?
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Compress++ reduces n? runtime to nlog® n, applies to any thinning algorithm
(e.g., kernel herding), and inflates error by at most a factor of 4
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Distribution Compression in Near-linear Time (shetty, Dwivedi, and Mackey, 2022

Algorithm 2: COMPRESS: Given n points return thinned coreset of size \/n

Input: halving algorithm HALVE, point sequence Si, of size n

if n=1 then return S;,

Partition Si, into four arbitrary subsequences {Si}le each of size n/4
for:=1,2,3,4do

S; + COMPRESS(S;, HALVE) // return coresets of size /%
end
S CONCATENATE(gl, §2, §3, §4) // coreset of size 2y/n
return HALVE(S) // coreset of size \/n
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Distribution Compression in Near-linear Time (shetty, Dwivedi, and Mackey, 2022

Error guarantees rely on unbiased halving (E[Pyanek | Sin] = Pink)

@ Achieved for any halving algorithm by symmetrization: return either the outputted
half or its complement with equal probability

d=2
‘ -------- Pressunns @rressnnns [ ]

2—3
) »
= 27 2
> »
e
© 273 =
oy §-ST: n025
2 Herd-Comp: n~%44

279, & Herd-Comp-no-symm: n%00

4* 4° 4° 47
Input size n
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