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Optimistic Online Learning

Paradigm for sequential decision making
Eachday t =1,...,7T

1. Observe hint about future loss function (e.g., an estimate of £;)
Make decision Wiy € W

2.
3. Suffer loss (W)
4. Use loss function ¢ to improve future decisions

Goal: Perform nearly as well as best constant decision in hindsight
T T
RegretT — E ét (Wt) — Hlf E Kt(u)
t=1 weW i

Total loss of Total loss of best
online learner constant decision




Optimistic Online Learning: Why?

Subseasonal climate forecasting

*Predicting temperature and precipitation 2-6 weeks in advance
*Forecasts issued daily, weekly, or semimonthly

*Diverse collection of forecasting models to choose from

*At least one model performs well each year (but unclear which a priori)

. Persistence++ . MultiLLR . Local Boosting . CFSV2++ . Climatology++ - Neural Ensemble
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Optimistic Online Learning: Why?

Subseasonal climate forecasting

*Predicting temperature and precipitation 2-6 weeks in advance
*Forecasts issued daily, weekly, or semimonthly

*Diverse collection of forecasting models to choose from
*At least one model performs well each year (but unclear which a priori)

Goal: Each year, perform nearly as well as best single model in hindsight
T T
RegretT — E ét (Wt) — inf E Kt(u)
t=1 neW i

Perfect fit? Real-time Total loss of best
forecasting loss single model




Online Learning for Subseasonal Forecasting

Challenges
X Delayed feedback

Must issue multiple forecasts before
observing feedback about the first
X short regret horizons

Want small regret after only T=26
semimonthly forecasts

X Impractical hyperparameters

Standard settings based on worst-
case future losses: challenging to
implement / overly conservative

This talk: New algorithms with
Vv Optimal regret under delay

Even variable and unbounded delays

Hints for missed feedback
Mitigate the impact of delay

v
Vv No hyperparameters!
v

Learning to hint wrapper
Learn effective hinting strategies




Standard Online Learning Algorithms

Follow the Regularized Leader (FTRL) [Abernethy et al., 2008]

Sum of loss subgradients (gt € 0t (Wy))

P
W1 = argmin (.., W) + A\ (w)
weEeW

* Minimize sum of linearized losses + strongly convex regularizer (w.r.t. norm ||-||)

Online Mirror Descent (OMD) [Warmuth & Jagakota, 1997]

Bregman divergence
w1 = argmin (g, w) + By, (w, wy) r By(w,u) =
weW Y(w) = y(u) — (VY (u), w — u)

* Minimize latest linearized loss while staying close to last decision point W



Online Learning with Optimism

Optimistic FTRL (OFTRL) [Rakhlin & Sridharan, 2013]
Sum of loss subgradients (8t € 04t (Wy))

r'e
Wii1 = argmin (g1.¢ + g¢11, W) + AP(w)
weWw T

Hint vector: Estimate of future feedback 8¢+1

* Benefit: reduced regret whenever g1 approximates gi+1 well

Single-step Optimistic OMD (SOOMD) [Joulani et al., 2017]

. N _ Bregman divergence
Wil = argmin (g + gr11 — 8¢, W) + Loy (W, wy) By(w,u) =
weW Y(w) —p(a) — (Vp(u), w — u)

7



Online Learning with Delay

Paradigm for sequential decision making with delayed feedback

Eachday t =1,...,7T

Observe hint about future loss function (e.g., an estimate of £)
Make decision Wt € W

Observe delayed loss ¢+—p(Wi—p)

Use delayed loss function ¢+—p to improve future decisions

B w N e

Wi = argmin (g1.4 + €411, W) + AP (w) (OFTRL)

weWw \

Problem: Unobservable

v

Wit = al“gfg\ifﬂ (8¢t + 8141 — 8, W) + By (W, W) (soomp)
W C



Online Learning with Optimism and Delay

Optimistic Delayed FTRL (ODFTRL) [This work]

Sum of subgradients observed so far

W
W1 = argmin (g1.;p + hyrq, w) + A\ (w)
wEW T

Hint vector: Estimate of future and missed feedback 8t—D41:¢4+1

Delayed Optimistic OMD (DOOMD) [This work]

w1 = argmin(g;—p +hyy1 —hy, w) + By (w, wy)
weW 4

Last observed subgradient



Learning with delay is a special case of learning

Delay as Optimism with optimism.

Lemma [This work]

DOOMD Wyy1 = argmin (g;—p + hy11 — hy, w) + By (w, wy) 1S
weW

SOOMD W11 = argmin (g; + Sr11 — 8¢, W) + B/\w(wa W)
weW

with areally bad hint  gt41 = —8t—p+1:¢ + g

* Key property: SOOMD depends on &: and g:+1 only through 81:¢ + 8t+1

* Not satisfied by more common (two-step) optimistic OMD algorithms
[Chiang et al., 2012; Rakhlin & Sridharan, 2013a;b; Kamalaruban, 2016]

Wii1/2 = argmin (g, w) + By (W, Wi_1/2) and Wiy = argmin (41, W) + By (W, Wiy /2)
wEW X Unobserved weW 11



Any regret bound for optimistic learning immediately

D e ‘ ay dS O ptl M IS M implies a regret bound for delayed learning.

New guarantee for optimistic online learning

Theorem 3 (OFTRL regret). If v is nonnegative, then, for
allu € W, the OFTRL iterates w; satisfy

Regrety(u) < Ap(u) + £ 7, huber([lg: — &l llgll.).

’

0 for perfect hints g; = g;
huber(||g: — &+, [1g¢ll«) = { 3llg: — &lI3 for small hint errors ||g¢ — g/«
gt — 8ell«llgells — 5llgel|?  for large hint errors [[g; — &l

 Strictly improves past OFTRL guarantees [Rakhlin & Sridharan (2013a); Mohri & Yang (2016);
Orabona (2019, Thm. 7.28); Joulani et al. (2017, Sec. 7.2)]

* Demonstrates robustness to inaccurate hints
e Same holds true for SOOMD (see our write-up)



Delay as Optimism

First general analysis of delayed F]

Any regret bound for optimistic learning immediately
implies a regret bound for delayed learning.

'RL (see Hsieh et al. [2020] for concurrent work)

Theorem 5 (ODFTRL regret). If 1 is nonnegative, then,
for allu € W, the ODFTRL iterates w; satisfy

Regret(u) < Mp(u) + + Zf_l b, r for
b, £ huber(|[hy — 320, p sl [1gell)-

 Compounding of regret due to delay
* Best \ vields (’)(\/(D + 1)T) regret, rate optimal in worst case weinberger & ordentlich, 2002]

* Heightened value of optimism

e Can mitigate delay by hinting at both missed and future subgradients gt D:t

* Strengthens analyses of special cases: ||h; — ZS T - | ZS D 1185l
[Hsieh et al., 2020; Quanrud & Khashabi 2015; Korotin et al., 2020]

* McMahan & Streeter [2014]: similar bound for unoptimistic scalar gradient descent 1



Tuning Regularizers with Optimism and Delay

Theorem 5 (ODFTRL regret). If 1 is nonnegative, then,
for all u € W, the ODFTRL iterates w; satisfy

Regrety(u) < Mp(u) + 2327 by g for
by,r £ huber(|[hy — >0, 1 &l [1gll+)-

* |ssue: How do we pick the regularization parameter A\ in practice?

T
b
e |deal: )\ = 2i=1 P01
SupuEU w(u)

minimizes regret bound but is unobservable

* Two practical strategies

1. Tuning-free algorithms (DORM and DORM+): independent of A, optimally tuned!
2. Self-tuning strategy (AdaHedgeD): adaptively sets A near-optimally

14



Regret Matching and Regret Matching+

Regret Matching (RM) [Blackwell, 1956]
Wir1 = Weg1/(1, Wepq) for ry = 1(g:, W) — g1,
Wit = max(0,r1. /)
Regret Matching+ (RM+) [Tammelin et al., 2015]
W1 = Wip1 /{1, Wepq) for 1 = 1(gs, wi) — g,
Wii1 = max (0, Wy + rt/)\)
 RM developed for finding correlated equilibria in two-player games
* RM+ solved Heads-up Limit Texas Hold’em poker [Bowling et al., 2015]
e Fach Wt € W = A4_1 represents a convex combination of input model forecasts

* Do not account for delay or optimism
* Regret guarantees are suboptimal for large d [Cesa-Bianchi & Lugosi, 2006; Orabona & Pal, 2015]



Delayed Optimistic Regret Matching (+)

Delayed Optimistic Regret Matching (DORM) [This work]

Wil = V’E"t+1/<1,V~Vt+1> for r;_p = 1<gt—D7Wt—D> — 8t—D,

Wit = max (0, (ri..—p + hey1)/A)

Delayed Optimistic Regret Matching+ (DORM+) [This work]
Wil = VNVt—|—1/<]-aWt—|—1> for r,_p = 1<gt—DaWt—D> — 8t—D,

wt+1 - max (O, V~Vt + (I't_D + ht_|_1 — ht)/)\) ] and

e Each w; € W = A4 represents a convex combination of input model forecasts

 Will choose ¢ > 2 to obtain optimal dependence of regret on dimension d

* Generalize
*RM [Blackwell, 1956] and RM+ [Tammelin et al., 2015]
*Undelayed optimistic RM with g = 2 independently developed by Farina et al. [2021]



Delayed Optimistic Regret Matching (+)
Lemma 1. The DORM and DORM++ iterates w; are

1. Proportional to ODFTRL and DOOMD iterates with W £ R:{,

w(w) = 5|w||2, and surrogate loss 0 (W) = (w, —1,).
2. Independent of the choice of A = Automatically optimally tuned

Corollary 1. For allu € Ay_1, DORM satisfies

T
Regret;(u) < )1\ %HU‘P | ,\(pl_l) D=1 Dtq = 2(p—1) t=1 Pt,q

for brg = huber([hy — X', prllg, relly):



Delayed Optimistic Regret Matching (+)
Lemma 1. The DORM and DORM++ iterates w; are
1. Proportional to ODFTRL and DOOMD iterates with W £ R:{,

w(w) = 5|w||2, and surrogate loss 0 (W) = (w, —1,).

2. Independent of the choice of A = Automatically optimally tuned

Corollary 1. For allu € Ag_1, if DORM ¢ = argmin d®/"(r — 1)
r>2

then Regret,(u) < \/(210g2(d) —1) Z;‘;l bt oo

AN

Optimal dimension dependence!
[Cesa-Bianchi & Lugosi, 2006]

20



Adaptive Learning with Optimism and Delay

Optimistic Delayed Adaptive FTRL (ODAFTRL) [This work]

W — aromin L h W \ W Time-varying
t+1 wgew <g1-t D+ Dg1, >_|_ t+1w( ) regularization strength

Theorem 1 (ODAFTRL regret). If1 is nonnegative and A is non-decreasing
in t, then, Yu € W, the ODAFTRL iterates w; satisfy

Regret,(u) < App(u) + 3, mm(bA ,arp)  with
b, r = huber(|lh; — Zs i—p 8sll« [1&ll«) and
a;r = diam(W) min (Hht - Zi:t—D gs|l«; HgtH*)

* Delay mitigation from accurate hints + robustness to hinting error

* Improves undelayed bounds of [Rakhlin & Sridharan, 2013a; Mohri & Yang, 2016;
Joulani et al., 2017] and concurrent unoptimistic bound of Hsieh et al. [2020]

» Bounded-domain factors a: r enable practical A\; -tuning strategies under delay
without any prior knowledge of unobserved subgradients 21



Adaptive Tuning with Optimism and Delay

Theorem 1 (ODAFTRL regret). If is nonnegative and A is non-decreasing
in t, then, Yu € W, the ODAFTRL iterates w; satisfy

Regret,(u) < App(u) + 3/, mm(bA ,arp)  with
byr 2 huber(|[hy — 370, p &l llgells)  and
e 2 diam(W)min (b, — ', gl lell.).

Wit1 = argr&ifn <g1:t—D + hy 4, W> T >\t+1¢(W)
W C

* |ssue: How do we pick the regularization sequence A; ?

t_ b .
 |deal: \; = SE)SIG-L ¢(i) nearly optimizes regret bound but unobservable

» Standard approach [Joulani et al., 2016; McMahan & Streeter, 2014; Hsieh et al., 2020]
* Uniformly upper bound unobserved b, r terms
* Requires bound on any subgradient norm that could arise: impractical or very loose!

e Our approach: Set \; based on tighter regret bound underlying theorem



AdaHedgeD

Theorem 1 (AdaHedgeD regret). For a > 0, consider the AdaHedgeD sequence

At41 = é 22;11) Os Jor Ot = B(Wt7 Aty B1:t) ht)-

If ¥ 1s nonnegative, then, for all u € W, the ODAFTRL iterates satisfy

Regret-(u) < (@ + 1) (2 MaXyc (7] &t—D:t—1,F + \/23:1 aiF + 2abt,p).

» Rate-optimal O(+/(D + 1)T + D) delay dependence in the worst case
* Nearly matches optimally tuned regret bound in hindsight
* No prior knowledge of future subgradients required

* Generalizes popular AdaHedge algorithm [Erven et al., 2011] by incorporating
delay, optimism, and tighter regret bounds to mitigate impact of delay



Subseasonal Climate Forecasting



FORECAST SKILL

Weather forecasts
predictability comes from initial
atmospheric conditions

Sub-seasonal forecasts
predictability comes from monitoring the
Madden-Julian Oscillation, land surface
data, and other sources

Seasonal forecasts
excellent predictability comes primarily from
sea-surface temperature data

accuracy dependent on ENSO state
good
L m
poor
Zero

O 10 2030 40 50 60 /0 8 <90 100 110 120

FORECAST LEAD TIME (days)

Source: https://iri.columbia.edu/news/qa-subseasonal-prediction-project/ 25



Subseasonal Forecasting: What and Why?

* What: Predicting temperature and precipitation 2 — 6 weeks out

¢ Why: (White et al., 2017, Meteorological Applications)
* Allocating water resources
* Managing wildfires
* Preparing for weather extremes
* e.g., droughts, heavy rainfall, and flooding
e Crop planting, irrigation scheduling, and

fertilizer application
* Energy pricing



Subseasonal Forecasting: What and Why?

* What: Predicting temperature and precipitation 2 — 6 Weeksout

° Why: (White et al., 2017, Meteorological Applications) wa I ER

* Allocating water resources
* Managing wildfires 3
* Preparing for weather extremes

e e.g., droughts, heavy rainfall, and flooding

PRIZE COMPE"HT[ON CENTER

$800 000 in prlze $$$'

h2 2016 Forecas! t g

* Crop planting, irrigation scheduling, and Saddle up ig
fertilizer application for the ‘
e Energy pricing Sub-
Seasonal
Climate
Forecast

Rodeo!




U.S. Bureau of Reclamation

e “The mission of the [USBR] is to manage,
develop, and protect water and related
resources in an environmentally and

economically sound manner in the interest of

the American public.”

* Manages water in 1/ western states

* Provides 1 out of 5 Western farmers with
irrigation water for 10 million farmland acres

* Generates enough electricity to power 3.5M U.S.
homes

* “During the past eight years, every state in
the Western United States has experienced
drought that has affected the economy both
locally and nationally through impacts to
agricultural production, water supply, and

nergy.”
Energy Credit: David Raff, USBR

MID-PACIFIC

@
Sacramento

SRRTMENT OF
5. OF

THE INTER>

LOWER
COLORADO

UPPER
COLORADO

Commissioner’s
Office, Denver
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Subseasonal Forecasts

* Four separate forecasting tasks
* Two variables: average temperature (degrees C) and total precipitation (mm)
* Two outlooks: weeks 3-4 and weeks 5-6 (forecast is over a 2-week period)

* Issued on a 1°X1° latitude-longitude grid (G =514 grid points)

* Issued every two weeks ==, - T T L e
over a year (T = 26) R 2 e LEEE
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Week 3-4 Forecast submitted 20180109, verifying 20180205 Week 3-4 Forecast submitted 20170905, verifying 20171002

Our temperature forecast Observed Our precipitation forecast Observed

i"’- = 50N TSR] (O [RCPRY (BN TN PR DR NS [RNNNY (O Y Y [ JO 50N — o e Gs) | TR | |
— 40N — ! 40N —
— 30N — 30N —

| | |

120W 110W 100W 120W 110W 100W
Damped Persistence CFSv2 Damped Persistence
50N Y (N [N S I\ QNN (] [N (S [ (N [ (Y - 50N Lt l] A D I U\ S ] | |

I LR 1N N T S R T L
Q‘.SON"’!. :

40N_; : : — ? *—*

— 40N —
;
K- ™ &
- > el Y
SEN ‘. I
. — . ‘.I-
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i Y
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BT [ [ [ .
5 4 3 2 1 0 1 2 3 4 5 50 25 10 5 25 1 1 25 5 10 25 50
Average Temperature Anomaly (°C) Accumulated Precipitation Anomaly (mm)
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Subseasonal Evaluation

For each 2-week period starting on date t, forecasts judged on geographic
root mean squared error (RMSE) between observed and predicted vectors of
temperature or precipitation y, and y, € RC

rmse yt,yt \/ Zg 1 ytg yt,g)

* Multitask objective function: couples together the G per-grid point forecasting tasks



Our SubseasonalRodeo Dataset

e To train and evaluate our models, we constructed a SubseasonalRodeo
dataset from diverse data sources

* Released via the Harvard Dataverse https://doi.org/10.7910/DVN/IHBANG

CPC Global Tmax Anom Oct 15, 2018

1981-2010 LTM

Maximum Temperature Anomaly

60S

CPC Daily Precip Anom Oct 15, 2018

1971-2000 LTM

Precipitation Anomaly
!

Reanalysis—1

1000hPa M
ary 1948

n Relative Humidity (%)

4 s & s 1
Sy
90S —T S S e w e T T | 20N
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NOAA/ESRL Physical Sciences Division 5800 sdstward movement
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5560 f/j motion motion
7
5520 = / 0
T
S § E E
5440 dul: 1948 to 2005 stormy and wet = S
S >
5400 ol
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https://doi.org/10.7910/DVN/IHBANG

Our SubseasonalRodeo Dataset

e To train and evaluate our models, we constructed a SubseasonalRodeo
dataset from diverse data sources

* Released via the Harvard Dataverse https://doi.org/10.7910/DVN/IHBANG

* Organized as a collection of Python Pandas objects in HDF5 format
» Spatial variables (vary with the target grid point but not the target date)
 Temporal variables (vary with the target date but not the target grid point)
» Spatiotemporal variables (vary with both the target grid point and the target date)

* Gridded data interpolated to 1°x1° grid (using distance-weighted average
interpolation) and restricted to contest grid points

* Daily measurements replaced with averages (or, for precipitation, sums)
over ensuing 2-week period


https://doi.org/10.7910/DVN/IHBANG

A Few of Our Forecasting Models

Climatology++

Predict mean or
geometric median
observation in
adaptively selected
window around
target date.

Best in
2016, 2017

CFSv2++

Learned correction
for operational
physics-based
numerical weather
prediction.

Best in
2011, 2013, 2019, 2020

50 4 -

454

40 -

354

301

-125

-101

-93

-125

-117

-93

100
75
50

25

=25

=50
=75
-100

Neural Ensemble

Neural network
ensemble using sea
surface temperature
features.

Best in
2012

Persistence++

Learned combination
of physics-based
forecasts, lagged
measurements, and
climatology.

Best in
2014, 2015, 2018

T T T T T -50
-125 -117 -109 -101 -93 -75
-100

so S 50
- | 2
45 == if
40
|
|| 0
[ |
354
N [ [ |
(\\\
AR
304 A\
NN
\;? \i::\w\ -25
\W\\ \ \\1 -50

—£25 —£17 -109 -101 -93 =75
-100

Question: How do we choose a single forecast to issue each day? 33



Online Learning for Subseasonal Forecasting

Answer: Online learning (with optimism and delay)!
* Select weights W¢ € A to predict a convex combination of input forecasts

. Persistence++ «  MultiLLR ~_ Local Boosting . CFSv2++ . Climatology++ - Neural Ensemble
S pa R | ¥ s e pa % AR\ S ) X L - u 7z
) Y~ “‘sﬁ. 7= % f e *? ‘ 75 |“|| N
} £ e NP g © |
Y ; / 4 i i ‘ f;.iq E'i“‘ , }ﬁ.é i 1
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t 3 W TR @ At i i\iﬁ" e e i% e g @ ¢ Vi @ a4l -8
", = i} "~, v 4’ 1\ b L% § / i} ‘J', “‘i "\ ' I
N i o ) L v N S 5 7
B " / ) R X l/ . )\ ) i “.t‘
i / ‘\\‘?1\ S TR ( {\FH\ iy 'f ‘\E“’\ o=, / {\ EH\ EAl=, (
r}*%i{’ v l‘ . ;f,;*; i“" S ' R ;@ v ThaN . :h\\ Fant 2\ \ . \\ Yo' I :\
‘ L ‘ RN ! d\n \ AN |
{ | i) { B { W ' {

* Goal: Perform nearly as well as best model each year in 2011-2020
e Loss: ft(W) = rmse(ytv fftW)
e Algorithms: DORM, DORM+, AdaHedgeD



Hinting with Delay

Hinting strategies

enone : h; 1 =0 [don’t hint!]

eprev.g:hy1 =g opt b use the last D+1 subgradients]
*mean g: hy | = %gu—p replicate mean of all subgradients]
erecent_g:hyy; = (D +1)gi—p [replicate most recent subgradient]



Table 1: Average RMSE of 2011-2020 semimonthly forecasts: The online learners compare favorably
with the best input models and learn to downweight lower-performing candidates, like the worst models.

ADAHEDGED DORM DORM-+ MODEL1 MoDEL2 MOoODEL3 MOoODEL4 MODELS MODEL6

P3-4 21.726 21.731 21.675 21.973 22.431 22.357 21.978 21.986 23.844
P5-6 21.868 21.957 21.838 22.030 22.570 22.383 22.004 21.993 23.257
T3-4 2.273 2.259 2.247 2.253 2.352 2.394 2.277 2.319 2.508
T5-6 2.316 2.316 2.303 2.270 2.368 2.459 2.278 2.317 2.569




Precip. Weeks 3-4

Yearly average regret (RI\/ISE loss)
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Precip. Weeks 3-4, 2019

Yearly average regret (RMSE loss)

< Positive regret

/ero regret =
Performance of
best input model

AdaHedgeD (RMSE: 20.060) —— DORM-+ (RMSE: 20.053) | <
-------- DORM (RMSE: 20.123)

Negative regret

o ¢ ¢ ¢ ¢ e e ¢ ¢ e ¢ e+ ]
e,
[

Nov Jan Mar May Jul Sep

T=26
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Precip. Weeks 3-4

Yearly average regret (RI\/ISE loss)

DORM (RMSE: 21.731)
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Takeaway: Small average regret each year despite only T = 26 observations per year
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Impact of Regularization: Temp. Weeks 3-4, 2019

150 Regularization \; L0 DUB weights w; AdaHedgeD weights w; DORM-+ weights w;
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Evolution of regularization and model weights for DORM+, AdaHedgeD, and
DUB (a more conservative tuning strategy based on a looser regret bound)

Takeaway: AdaHedgeD and DORM+ are much more
adaptive to changing model quality 2



Impact of Optimism: Precip Weeks 3-4, DORM+

Yearly average regret (RMSE loss)
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2 : : : learned (RMSE: 21.745) ——= prev_g (RMSE: 21.727)
% : : : — — mean_g (RMSE: 21.830) recent_g (RMSE: 21.675)
=2 i i [ none (RMSE: 21.796)
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2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
* none outperformed by all hinting strategies except mean_g

 recent_g performs best on all four tasks 4



Learning to Hint with Delay

Observation: DORM, DORM+, & AdaHedgeD all admit bounds of the form

(*) Regret(u) < Cp(u) + Cl(u)\/Z?zl ft(hy) for f; convex

(e.g., filhy) = [[rellgllht —r¢—p:tflq for DORM)

ldea: Combine m different hinting strategies using delayed online learning!
* Combo hint h;(w) = Hyw for hint matrix H; and w € A\,,,_1

Theorem 1. If the base online learner satisfies (*) then learning to hint with
DORM+ satisfies

Regrety(u) < Co(u) + Cr(w)y/infuco S0, fi(hi(w)) + o(y/(D + 1)T).



Impact of Optimism: Precip Weeks 3-4, DORM+

Yearly average regret (RMSE loss)
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learned (RMSE: 21.745) ——= prev_g (RMSE: 21.727)

— — mean_g (RMSE: 21.830) recent_g (RMSE: 21.675)
RIS none (RMSE: 21.796)

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

none outperformed by all hinting strategies except mean_g
recent_g performs best on all four tasks; learned is competitive default

43



Online Learning for Subseasonal Forecasting

Challenges
X Delayed feedback

Must issue multiple forecasts before
observing feedback about the first
X short regret horizons

Want small regret after only T=26
biweekly forecasts

X Impractical hyperparameters

Standard settings based on worst-
case future losses: challenging to
implement / overly conservative

This talk: New algorithms with
Vv Optimal regret under delay

Even variable and unbounded delays

V' Hints for missed feedback
Mitigate the impact of delay

No hyperparameters!

Learning to hint wrapper

Learn effective hinting strategies
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Average RMSE
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Open Questions and Future Work

* Hinting with delay
 What is the relative impact of hinting at future vs. missed losses?
e Are there (near-)optimal hinting strategies under delay?

Precip. 3-4w
[
([
(]
[
Y ([
none past future past+ 2D+1 3D+1
future

21.900

21.875

21.850

21.825

21.800

Precip. 5-6w
{
(
(
(]
[ ]
(]
none past future past+ 2D+1 3D+1
future

2.258

2.256

2.254

2.252

2.250

2.248

Temp. 3-4w
[
(
¢ (
[ (]
none past future past+ 2D+1 3D+1
future

2.308

2.307

2.306

2.305

2.304

2.303

Temp. 5-6w
{
(
Y (]
° (]
none past future past+ 2D+1 3D+1
future

45



Open Questions and Future Work

* Hinting with delay
 What is the relative impact of hinting at future vs. missed losses?
e Are there (near-)optimal hinting strategies under delay?

e Developing tighter convex regret bounds for hint learning

* Domain-specific hinters
* Use shorter-term forecasters to more accurately predict missed losses

Online Learning with Optimism and Delay
arxiv.org/abs/2106.06885

Python Optimistic Online LearninF with Delay (PoolD)
github.com/geflaspohler/poold

Code: EITa[s]
15- 3

OIftee

45


http://arxiv.org/abs/2106.06885
https://github.com/geflaspohler/poold

