Stein's Method, Learning, and Inference

Lester Mackey

Microsoft Research New England

Collaborators: Jackson Gorham, Andrew Duncan, Sebastian Vollmer, Jonathan Huggins, Wilson Chen, Alessandro
Barp, Francois-Xavier Briol, Mark Girolami, Chris Oates, Murat Erdogdu, Ohad Shamir, Marina Riabiz, Jon
Cockayne, Pawel Swietach, Steven Niederer, Anant Raj, Heishiro Kanagawa, Wittawat Jitkrittum, Kenji Fukumizu,
Arthur Gretton, Jiaxin Shi, Chang Liu, Yuhao Zhou, Jessica Hwang, Michalis Titsias, and Carl-Johann Simon-Gabriel

Mackey (MSR) Stein’s Method, Learning, and Inference January 8, 2025



Motivation: Large-scale Posterior Inference

Example: Bayesian logistic regression

@ Feature vectors: v; € RY for each datapoint [ = 1,..., L g é g Z
@ Binary class labels: Y, € {0,1}, P(Y; =1 v, 8) = 1+e*1<37”l> =6 s
© Unknown parameter vector: 5 ~ N(0, 1) 519 710

. . —_— ——
@ Generative model simple to express Class 0 Clase 1

@ Posterior distribution over unknown parameters is complex
e Normalization constant unknown, exact integration intractable

Standard inferential approach: Use Markov chain Monte Carlo (MCMC) to
(eventually) draw samples from the posterior distribution
o Benefit: Approximates intractable posterior expectations Ep|L(Z)]= [p(x)h(x)dz
with asymptotically exact sample estimates Eq[h(X)] = %2?:1 h(ml)

@ Problem: Each new MCMC sample point x; requires iterating over entire observed

dataset: prohibitive when dataset is large!
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Motivation: Large-scale Posterior Inference

Question: How do we scale Markov chain Monte Carlo (MCMC) posterior inference to
massive datasets?

o Benefit: Approximates intractable posterior expectations Ep[h(Z)] = [p(x)h(x)dz
with asymptotically exact sample estimates Eq[h(X)] = %2?:1 h(ml)
@ Problem: Each point x; requires iterating over entire dataset!
Template solution: Approximate MCMC with subset posteriors
[Welling and Teh, 2011, Ahn, Korattikara, and Welling, 2012, Korattikara, Chen, and Welling, 2014]
@ Approximate standard MCMC procedure in a manner that makes use of only a
small subset of datapoints per sample
@ Reduced computational overhead leads to faster sampling and reduced Monte Carlo
variance
@ Introduces asymptotic bias: target distribution is not stationary

@ Hope that for fixed amount of sampling time, variance reduction will outweigh bias
introduced
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Motivation: Large-scale Posterior Inference

Template solution: Approximate MCMC with subset posteriors

[Welling and Teh, 2011, Ahn, Korattikara, and Welling, 2012, Korattikara, Chen, and Welling, 2014]

@ Hope that for fixed amount of sampling time, variance reduction will outweigh bias
introduced

Introduces new challenges
@ How do we compare and evaluate samples from approximate MCMC procedures?
@ How do we select samplers and their tuning parameters?
@ How do we quantify the bias-variance trade-off explicitly?

Difficulty: Standard evaluation criteria like effective sample size, trace plots, and
variance diagnostics assume convergence to the target distribution and do not account
for asymptotic bias

This talk: Introduce new quality measures suitable for comparing the quality of
approximate MCMC samples
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Quality Measures for Samples

Challenge: Develop measure suitable for comparing the quality of any two samples
approximating a common target distribution

Given
e Continuous target distribution P with support X = R and density p
e p known up to normalization, integration under P is intractable
e Sample points z1,..., 2, € X
o Define discrete distribution (), with, for any function A,
Eq, [M(X)] = L3 | h(x;) used to approximate Ep[h(Z)]

n
e We make no assumption about the provenance of the x;

Goal: Quantify how well Eq, approximates Ep in a manner that

|. Detects when a sample sequence is converging to the target

[l. Detects when a sample sequence is not converging to the target
[11. Is computationally feasible
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Integral Probability Metrics

Goal: Quantify how well Eg, approximates Ep

Idea: Consider an integral probability metric (IPM) [Mmiiller, 1997]
dy(Qn, P) = sup [Eq, [M(X)] — Ep[h(Z)]]
@ Measures maximum d|screpancy between sample and target expectations over a
class of real-valued test functions H
@ When H sufficiently large, convergence of dy (Q,, P) to zero implies (Q,)n>1
converges weakly to P (Requirement I1)
Problem: Integration under P intractable!
= Most IPMs cannot be computed in practice

Idea: Only consider functions with Ep[h(Z)] known a priori to be 0
@ Then IPM computation only depends on @),,!
@ How do we select this class of test functions?
@ Will the resulting discrepancy measure track sample sequence convergence?

@ How do we solve the resulting optimization problem in practice?
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Stein's Method

Stein’s method [1972] provides a recipe for controlling convergence:
@ ldentify operator 7 and set G of functions g : X — R? with
Ep[(Tg)(Z)] =0 forall geg.
T and G together define the Stein discrepancy (comam and Mackey, 2015]
$(QnT,96) = Sup [Eq. [(T9)(X)]| = drg(Qn, P),

an IPM-type measure with no explicit integration under P

@ Lower bound S(Q.., T,G) by reference IPM dy(Q,., P) = (Q,)n>1
converges to P whenever S(Q,,,T,G) — 0 (Requirement II)
e Performed once, in advance, for large classes of distributions

@ Upper bound §(Q.., 7,G) by any means necessary to demonstrate
convergence to 0 (Requirement |)

Standard use: As analytical tool to prove convergence
Our goal: Develop Stein discrepancy into practical quality measure
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|dentifying a Stein Operator T

Goal: Identify operator 7 for which Ep[(T¢)(Z)] =0 for all g € G

Approach: Generator method of Barbour [1988, 1990], Gétze [1991]
o Identify a Markov process (Z;);>¢ with stationary distribution P
@ Under mild conditions, its infinitesimal generator
(Au)(x) = lim (E[u(Z,) | Zo = =) — u(x))/1
satisfies Ep[(Au)(Z)] =0

Overdamped Langevin diffusion: dZ; = lVlogp(Zt)dzf + dW;

o Generator: (Apu)(z) = 3(Vu(z), Vlogp(z)) + :(V, Vu(z))
o Stein operator: (7pg)(x) = (g(x), Vlogp(z)) + (V, g(x))
[Gorham and Mackey, 2015, Oates, Girolami, and Chopin, 2016]

o Depends on P only through V log p; computable even if p cannot be normalized!
o Ep[(Tpg)(Z)] = 0 for all g : X — R? in classical Stein set

G = {9+ Sup, 5, max (lg(@)||", [ Vg()|[", [ZLTewL) < 1)
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Detecting Convergence and Non-convergence

Goal: Show classical Stein discrepancy S(Q,, 7p,Gj.) — 0 if and only if (Qy)n>1
converges to P
@ In the univariate case (d = 1), known that for many targets P,
S(Qn, Tp,Gy.y) — 0 only if Wasserstein dyy,  (Qn, P) — 0
[Stein, Diaconis, Holmes, and Reinert, 2004, Chatterjee and Shao, 2011, Chen, Goldstein, and Shao, 2011]
e Few multivariate targets have been analyzed (see [Reinert and Rsllin, 2009, Chatterjee and
Meckes, 2008, Meckes, 2009] for multivariate Gaussian)

New contribution [Gorham, Duncan, Volimer, and Mackey, 2019]

Theorem (Stein Discrepancy-Wasserstein Equivalence)

If the Langevin diffusion couples at an integrable rate and V log p is Lipschitz, then
S(Qn, Te, G) — 0 & dwy (Qn, P) — 0.

@ Examples: strongly log concave P, Bayesian logistic regression or robust t
regression with Gaussian priors, Gaussian mixtures
e Conditions not necessary: template for bounding S(Q», 7p, Gj.|)
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A Simple Example
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Student's t
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A Simple Example

Stein discrepancy
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Selecting Sampler Hyperparameters

diagnostic = ESS Step size, € = 5e-05 Step size, € = 5e-03 Step size, € = 5e-02
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Target posterior density: p(z) o 7(z) Hle m(y | x)
Stochastic Gradient Langevin Dynamics [Welling and Teh, 2011]
Tpp1 ~ N (g, + §5(Viogm(xy) + ﬁ > e, Viogm(ylzy)), el)
@ Random batch By of datapoints used to draw each sample point
e Step size € too small = slow mixing
e Step size € too large = sampling from very different distribution
e Standard diagnostics like effective sample size (ESS) do not account for this bias
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Alternative Stein Sets §

Goal: Identify a more “user-friendly” Stein set G than the classical

Approach: Reproducing kernels ik : X' x X — R [Oates, Girolami, and Chopin, 2016,
Chwialkowski, Strathmann, and Gretton, 2016, Liu, Lee, and Jordan, 2016]
@ A reproducing kernel k is symmetric (k(z,y) = k(y, x)) and positive semidefinite
(Z“ cick(zi,z1) > 0,Vz; € X, ¢; € R)
o Gaussian: k(z,y) = e 2Ie=vl3 IMQ: k(z,y) = —Ll
_ _ (=927
@ Generates a reproducing kernel Hilbert space (RKHS) Ky,
@ Define the kernel SAtein set [Gorham and Mackey, 2017] R
Gr ={9="(91,---,90) | Iv]]" <1 forv; = lg;l[,, }
@ Yields closed-form kernel Stein discrepancy (KSD)
S(Qu T, Gi) = |[w] for w; 2 /S0, K (i, 7).

e Reduces to parallelizable pairwise evaluations of Stein kernels

k@, y) £ s Va, Vi, (0(2)k(2, y)p(y))

Mackey (MSR) Stein’s Method, Learning, and Inference January 8, 2025 13 /34




Detecting Non-convergence

Goal: Show (Q;),>1 converges to P whenever S(Q,,, Tp, Gr) — 0

Theorem (Univariate KSD detects non-convergence (cormam and Mackey, 2017])

Suppose P € P and k(x,y) = ®(x — y) for ® € C? with a non-vanishing generalized
Fourier transform. If d = 1, then (Q,)n>1 converges weakly to P whenever

S(Qn, Tp, Gr) — 0.

@ P is the set of targets P with Lipschitz V log p and strongly log concave tails
((Vlog(p(z)/p(y)),y*@ >k for ||l —ylla > 1)

llz—yl3
o Includes Bayesian logistic and Student’s t regression with Gaussian priors, Gaussian
mixtures with common covariance, ...

@ Justifies use of KSD with popular Gaussian, Matérn, or inverse multiquadric kernels
k in the univariate case
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Detecting Non-convergence

Goal: Show (Q,),>1 converges to P whenever S(Q,, Tp,Gr) — 0

@ In higher dimensions, KSDs based on common kernels fail to detect
non-convergence, even for Gaussian targets P

Theorem (KSD fails with light kernel tails [Gorham and Mackey, 2017])

Suppose d >3, P =N (0,1;), and o £ (3 — 3)7*. If k(z,y) and its derivatives decay

at a o([|lx — yl|,") rate as ||z — yll, = oo, then S(Qn, Tp, Gk) — 0 for some (Qn)n>1
not converging to P.

e Gaussian (k(z,y) = e~z1#=vI2) and Matérn kernels fail for d > 3

o Inverse multiquadric kernels (k(z,y) = (1 + ||z — y||2)?) with 8 < —1 fail for
28
4> 15
@ The violating sample sequences (Q),,),>1 are simple to construct

Problem: Kernels with light tails ignore excess mass in the tails
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The Importance of Kernel Choice

i.i.d. from target P Off-target sample
10°- i "-;:::':::“‘u - o
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Detecting Non-convergence

Goal: Show (Q,),>1 converges to P whenever S(Q,, Tp,Gr) — 0
@ Consider the inverse multiquadric (IMQ) kernel
k(z,y) = (¢ + ||lx — y|l3)? for some B < 0,c € R.
e IMQ KSD fails to detect non-convergence when < —1
@ However, IMQ KSD detects non-convergence when § € (—1,0)

Theorem (IMQ KSD detects non-convergence [Gorham and Mackey, 2017])

Suppose P € P and k(z,y) = (> + ||z — y||3)? for B € (=1,0). If S(Qn, T, Gr) — 0,
then (Q,)n>1 converges weakly to P.
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Detecting Convergence

Goal: Show S(Q., Tp, Gr) — 0 whenever (Q),,),>1 converges to P

Proposition (KSD detects convergence [Gorham and Mackey, 2017])

Ifk € 052’2) and V log p Lipschitz and square integrable under P, then
S(Qn, Tp, Gr) — 0 whenever the Wasserstein distance dw ., (Qn, P) — 0.

@ Covers Gaussian, Matérn, IMQ, and other common bounded kernels k
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Selecting Samplers

Stochastic Gradient Fisher Scoring (SGFS)
[Ahn, Korattikara, and Welling, 2012]
@ Approximate MCMC procedure designed for scalability

e Approximates Metropolis-adjusted Langevin algorithm but does not use
Metropolis-Hastings correction
e Target P is not stationary distribution

@ Goal: Choose between two variants

e SGFS-f inverts a d x d matrix for each new sample point
e SGFS-d inverts a diagonal matrix to reduce sampling time

e MNIST handwritten digits [Ahn, Korattikara, and Welling, 2012]
e 10000 images, 51 features, binary label indicating whether image of a 7ora 9
@ Bayesian logistic regression posterior P
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Selecting Samplers
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o Left: IMQ KSD quality comparison for SGFS Bayesian logistic regression (no
surrogate ground truth used)

@ Right: SGFS sample points (5 x 10%) with marginal means and 95% confidence
ellipses (blue) that align best / worst with surrogate ground truth sample (red)

@ Small speed-up of SGFS-d (0.0017s vs. 0.0019s) outweighed by loss in accuracy
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Stochastic Stein Discrepancies

Issue: What if Vlogp is too expensive to evaluate?
e Posterior Vlog p(z) = Vilog(x) + Yr, Vieg7(y | x)
Solution: Stochastic Stein Discrepancies [coham, Raj, and Mackey, 2020]
@ Replace each Vlogp(x;) with stochastic gradient based on random datapoint
batch: Vlogm(x;) + ﬁ > e, V1og m(yilz:)
@ Resulting stochastic Stein discrepancies inherit convergence control of standard
SDs with probability 1 [Gorham, Raj, and Mackey, 2020]
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Beyond Sample Quality Comparison

Goodness-of-fit testing
@ Chwialkowski, Strathmann, and Gretton [2016] used the KSD S(Q,,, Tp, Gi) to test whether a
sample was drawn from a target distribution P (see also Liu, Lee, and Jordan [2016])
@ Test with default Gaussian kernel k& experienced considerable loss of power as the
dimension d increased

@ We recreate their experiment with IMQ kernel (3 = —1,¢=1)
e For n =500, generate sample (x;)7" | with x; = z; + uje1 % i N(0,1;) and
w; %S Unif[0, 1]. Target P = N(0, I,).
° Compare with standard normality test of Baringhaus and Henze [1988]

Table: Mean power of multivariate normality tests across 400 simulations

d=2 | d=5 | d=10 | d=15 | d=20 | d=25
B&H 1.0 | 1.0 1.0 091 | 0.57 | 0.26

Gaussian | 1.0 | 1.0 | 0.88 | 0.29 | 0.12 | 0.02
IMQ 1.0 | 1.0 1.0 1.0 1.0 1.0

Mackey (MSR) Stein’s Method, Learning, and Inference January 8, 2025 22/34




Beyond Sample Quality Comparison

Improving sample quality
e Given sample points (;)i,, can minimize KSD S(Qn, Tp, Gr) over all weighted
samples Q,, = > | qn(2;)04, for g, a probability mass function
® Liu and Lee [2017] do this with Gaussian kernel k(z,y) = e~ nll==vl3

e Bandwidth A set to median of the squared Euclidean distance between pairs of
sample points

o We recreate their experiment with the IMQ kernel k(z,y) = (1 + 1|z — y||3)~/2
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Improving Sample Quality
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Generating High-quality Samples

Stein Variational Gradient Descent (SVGD) [Liu and Wang, 2016]

@ Uses KSD to repeatedly update locations of n sample points:
Ty = x + 30 (R, ;) Vg p(xy) + Vo, k(xy, 7))
o Approximates gradient step in KL divergence

(] DriVeS KSD to 0 at O(l/\/ﬁ) rate [Balasubramanian, Banerjee, and Ghosal, 2024]

o Simple to implement (but each update costs n? time)

@ Stochastic SVGD: uses stochastic KSD =- same guarantees with many fewer

I|ke||h00d eVaIUations [Gorham, Raj, and Mackey, 2020]
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Generating High-quality Samples

StEil’l Points [Chen, Mackey, Gorham, Briol, and Oates, 2018]
@ Greedily minimizes KSD by constructing @),, = %Z?:l 0z, With

T, € argmin, S(“2Qn_1 + 26,, Tp, G,) = argmin, Z?Zl @ + 5 K (2, )
e Sends KSD to zero at O(4/log(n)/n) rate

Stein Point MCMC [Chen, Barp, Briol, Gorham, Girolami, Mackey, and Oates, 2019]
@ Suffices to optimize over iterates of a Markov chain

MCMC SP-MCMC
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Future Directions

Many opportunities for future development
@ Improving scalability while maintaining convergence control

e Subsampling of likelihood terms in V 1og p [Gorham, Raj, and Mackey, 2020]
e Linear time, low-rank kernels that distinguish distributions

o Finite set Stein discrepancies [itkrittum, Xu, Szabé, Fukumizu, and Gretton, 2017]
@ Random feature Stein discrepancies [Huggins and Mackey, 2018]
@ Open question: When do such discrepancies control convergence?
@ Exploring the impact of Stein operator choice

o An infinite number of operators 7 characterize P

e Open questions: How is discrepancy impacted? How do we select the best 77

e Heavy tails: If Vlogp bounded and k € Cél’l), KSD does not control convergence
o Diﬂ:USion Stein Opel’atol’s (Tg)(.’II) = Tb(V,p(x)a(x)g(m)} Of Gorham, Duncan, Vollmer, and

Mackey [2010] may be appropriate for such heavy-tailed distributions

o Isolated modes: Langevin SDs struggle to detect unexplored modes. Better 77
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Future Directions

Training generative models
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Future Directions

Parameter estimation in unnormalized models

Example (Minimum Stein Discrepancy Estimation (sarp, rol, Duncan, Girolami, and Mackey, 2019] )

6 € argming.q S(Qn, Tp,, G)
@ Unlike maximum likelihood, avoids normalization constant / integration under P!
@ Can design diffusion-based discrepancies to deal with heavy tails and outliers
= : E — Bx10
£ 10%4: £
= : — M s
o A L O 4x10?
= 1 : —— KD ;rr:th c
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Future Directions

Post-selection inference
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@ Constrained targets

P arise when testing
significance after
variable selection

[Tian and Taylor, 2018]

Stein Variational
Mirror Descent and
Mirrored SVGD can
derive confidence
intervals for
constrained P

[Shi, Liu, and Mackey, 2022a]
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Future Directions

Non-convex optimization

Example (Optimization with Discretized Diffusions (erdogdu, Mackey, and Shamir, 2018))

@ To minimize f(x), choose a(z) = ¢l with a(z)V f(x) Lipschitz and distantly
dissipative (L@YIE WD) 5 L for g — yll, > 1)

lle—yl3
e Approximate target sequence p,(x) oc e~ 7/ using Markov chain
Tpi1 ~ N (T, — Fa(zn)Vf(zn) + 2:; (V,a(zn)), f/—’;a(mn))
e Thm: min;<;<, Ef(x;) — min, f(z) (with explicit error bounds) for appropriate
€, and v,, when V f, Va, and a'/? are Lipschitz
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Future Directions

Non'convex Optimization [Erdogdu, Mackey, and Shamir, 2018]
min, f(z) = 5log(1 + 3llz[3), a(x) = (1+ §|2[5)], a(x)Vf(z) = 5z
|

150 -, - Gradient Descent (first 7000 iters)
----- Gradient Descent (next 3000 iters)
Langevin Algorithm (300 iters)
100 - —e— Designed Diffusion (15 iters)
50-
) //‘ I
0- D

_50 -] 60
—-100- i
—-150- | [ | g /

-100 0 100 x s/ -100
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Future Directions

Distribution compression

Example (Stein Kernel Thinning (i, owivedi, and Mackey, 2024])

@ Goal: Compress sample approximation (),, to reduce downstream costs
e e.g., in heart modeling, each sample point can trigger a 1000 CPU hour simulation

o Stein Thinning: Greedily minimize KSD using sample points x4, ..., x,
e
. . 3:.0.

o Bonus: Corrects for biases due to off-target sampling, tempering, approximate
MCMC, or bU rn—in [Riabiz, Chen, Cockayne, Swietach, Niederer, Mackey, and Oates, 2022]

e Kernel Thinning: Compress n point summary into y/n point summary with
comparable KSD [Dwivedi and Mackey, 2024]
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Future Directions

Many opportunities for future development
@ Improving scalability while maintaining convergence control

Subsampling of likelihood terms in V 10g p [corham, Raj, and Mackey, 2020]

Linear time, low-rank kernels that distinguish distributions
[Jitkrittum, Xu, Szabé, Fukumizu, and Gretton, 2017, Huggins and Mackey, 2018]

@ Exploring the impact of Stein operator choice

An infinite number of operators T characterize P
How is discrepancy impacted? How do we select the best 77
Diffusion Stein operators [Gorham, Duncan, Volimer, and Mackey, 2019]; Best T~ for unexplored modes?

© Addressing other inferential tasks

Generative models [wang and Liu, 2016, Pu, Gan, Henao, Li, Han, and Carin, 2017, Shi, Zhou, Hwang, Titsias, and Mackey, 2022b]
Parameter estimation [Barp, Briol, Duncan, Girolami, and Mackey, 2019]

Post-selection inference [shi, Liu, and Mackey, 2022a]

Non-convex optimization [Erdogdu, Mackey, and Shamir, 2018]

Distribution compression [Li, Dwivedi, and Mackey, 2024]

Control variates
[Assaraf and Caffarel, 1999, Mira, Solgi, and Imparato, 2013, Oates, Girolami, and Chopin, 2016, Shi, Zhou, Hwang, Titsias, and Mackey, 2022b]
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Selecting Sampler Hyperparameters

Setup [Welling and Teh, 2011]
@ Consider the posterior distribution P induced by L datapoints y; drawn i.i.d. from a
Gaussian mixture likelihood
Yi|X S IN (X, 2) + AN (X + X5, 2)
under Gaussian priors on the parameters X € R?
X7 ~N(0,10) 1L X5 ~ N(0,1)
e Draw m = 100 datapoints y; with parameters (z1,2z2) = (0, 1)
e Induces posterior with second mode at (x1,x2) = (1, —1)
@ For range of parameters ¢, run approximate SGLD for 1000 steps and store
resulting posterior sample @),
@ Use minimum GSD to select appropriate €
o Compare with standard MCMC parameter selection criterion, effective sample size
(ESS), a measure of Markov chain autocorrelation
o Compute median of diagnostic over 50 random sequences
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Selecting Samplers

Setup
e MNIST handwritten digits [Ahn, Korattikara, and Welling, 2012]
e 10000 images, 51 features, binary label indicating whether image of a 7ora 9
@ Bayesian logistic regression posterior P
o L independent observations (y;,v;) € {1, —1} x R? with

P(Y; = 1fvi, X) = 1/(1 + exp(— (v, X)))

o Flat improper prior on the parameters X € R¢

@ Use IMQ KSD (8 = —%,c = 1) to compare SGFS-f to SGFS-d drawing 10° sample
points and discarding flrst half as burn-in

@ For external support, compare bivariate marginal means and 95% confidence
ellipses with surrogate ground truth Hamiltonian Monte chain with 10° sample
points [Ahn, Korattikara, and Welling, 2012]
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The Importance of Tightness

Goal: Show S§(Q,, Tp,Gx) — 0 only if Q,, converges to P

o A sequence ((Q),),>1 is uniformly tight if for every € > 0, there is a finite number
R(e€) such that sup,, Q, (|| X, > R(e)) <€

e Intuitively, no mass in the sequence escapes to infinity

Theorem (KSD detects tight non-convergence [Gorham and Mackey, 2017])

Suppose that P € P and k(z,y) = ®(x — y) for ® € C? with a non-vanishing
generalized Fourier transform. If (Q,),>1 is uniformly tight and S(Q,, Tp, Gr) — 0,
then (Qn)n>1 converges weakly to P.

@ Good news, but, ideally, KSD would detect non-tight sequences automatically...
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