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Judah Cohen

* Climatologist, director of seasonal forecasting
at Atmospheric and Environmental Research

e Concern: Community not making the best use of
historical data in weather / climate forecasting

* Landscape dominated by dynamical models, purely
physics-based models of atmospheric and oceanic
evolution




Dynamical Models

* |Initialized with current weather
conditions estimated from
measurements Aok ihterk G Y

» Simulate future weather / climate by
discretizing partial differential Vertical Grid
equations using supercomputers st

* Accuracy limited by chaotic nature: Bhivaial Procasses T a Rlode
errors in inputs rapidly amplified S
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Source:
http://celebrating200years.noaa.gov/breakt
hroughs/climate_model/AtmosphericModel
Schematic.png

* Sometimes debiased by comparing
predictions to truth over recent years



Judah Cohen

* Climatologist, director of seasonal forecasting
at Atmospheric and Environmental Research

e Concern: Community not making the best use of
historical data in weather / climate forecasting

* Landscape dominated by dynamical models, purely
physics-based models of atmospheric and oceanic
evolution

* Concern: Subseasonal forecasts especially poor




FORECAST SKILL

Weather forecasts
predictability comes from initial
atmospheric conditions

Sub-seasonal forecasts
predictability comes from monitoring the
Madden-Julian Oscillation, land surface
data, and other sources

Climate forecasts

excellent predictability comes primarily from
sea-surface temperature data

accuracy dependent on ENSO state
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tair “
poor
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Source: https://iri.columbia.edu/news/qga-subseasonal-prediction-project/



Subseasonal Forecasting: What and Why?

* What: Predicting temperature and precipitation 2 — 6 weeks out

° Why: (White et al., 2017, Meteorological Applications) Wa I ER

* Allocating water resources
* Managing wildfires
* Preparing for weather extremes
e e.g., droughts, heavy rainfall, and flooding

* Crop planting, irrigation scheduling, and Saddle up ﬂg SSSSSSS
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U.S. Bureau of Reclamation @\
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* “The mission of the [USBR] is to manage,
develop, and protect water and related
resources in an environmentally and
economically sound manner in the interest of
the American public.” |

* Manages water in 17 western states

* Provides 1 out of 5 Western farmers with
irrigation water for 10 million farmland acres

* Generates enough electricity to power 3.5M U.S.
homes

* “During the past eight years, every state in
the Western United States has experienced
drought that has affected the economy both
locally and nationally through impacts to
agricultural production, water supply, and
energy.”
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Our SubseasonalClimateUSA Dataset

e To train and evaluate our models, we constructed a
SubseasonalClimateUSA dataset from diverse data sources

* Updated daily + accessed via subseasonal data Python package
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https://github.com/microsoft/subseasonal_data

Adaptive Bias Correction (ABC): Hybrid Physics + Learning Model

Precipitation Temperature

Weeks 1-2 Weeks 3-4 Weeks 5-6 Weeks 1-2 Weeks 3-4 Weeks 5-6
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* Doubles or triples the forecasting skill of US operational dynamical model (CFSv2)



Adaptive Bias Correction (ABC): Hybrid Physics + Learning Model
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e Can be used to correct any dynamical model
* Including leading model from European Centre for Medium-Range Weather Forecasts
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Adaptive Bias Correction (ABC): Hybrid Physics + Learning Model

U.S. Temperature, weeks 3-4 U.S. Temperature, weeks 5-6
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e Can be used to correct any dynamical model
* Including leading model from European Centre for Medium-Range Weather Forecasts



ABC: An Ensemble of 3 Learning Models

* Climatology++
* Predicts historical geographic median or mean in window around target day of year

e # of training years and window size chosen adaptively via an online tuning procedure
e 250% more skillful than debiased CFSv2 for precipitation

* Dynamical++
e Learned correction for raw dynamical model forecasts

* Averages dynamical forecasts over a range of issuance dates and lead times, subtracts mean
ensemble forecast, and adds mean ground-truth over a learned window

* Ensembled lead times and issuance dates and window size chosen adaptively
* Improves deb. CFSv2 temperature and precipitation skill by 50-275%

* Persistence++

» Least squares regression per grid point to combine climatology, recent weather trends in the
form of lagged temperature or precipitation measurements, and CFSv2 ensemble forecast

* Improves deb. CFSv2 temperature and precipitation skill by 40-130%
* Also outperform 7 state-of-the-art machine learning and deep learning methods



Contiguous U.S. Performance (2010-2020)

Average % Skill

Temperature Precipitation
Group Model weeks 3-4  weeks 5-6 weeks 3-4 weeks 5-6
Baselines Debiased CFSv2 24.94 19.12 5.77 4.28
Persistence 10.64 6.22 8.31 7.41
Learning AutoKNN 12.43 8.56 6.66 5.93
Informer 0.55 0.01 6.15 5.86
LocalBoosting 14.44 12.69 10.82 9.72
MultiLLR 24.5 16.68 9.49 7.97
N—BEATS 9.21 4.16 5.48 4.46
Prophet 20.21 19.78 13.51 13.41
Salient 2.0 11.24 11.77 10.11 9.99
ABC Climatology++ 18.61 18.87 15.04 14.99
CFSv2++ 32.38 29.19 16.34 16.09
Persistence++ 32.4 26.73 13.38 9.77
ABC 33.58 30.56 18.94 18.35

» Takeaway: ABC outperforms operational US model (CFSv2) and 7 state-of-
the-art machine learning and deep learning methods from the literature



ABC Reduces Systematic Model Bias

Temperature Temperature
Weeks 1-2 Weeks 3-4 Weeks 5-6 Weeks 1-2 Weeks 3-4 Weeks 5-6

ECMWF
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ABC-CFSv2
ABC-ECMWF

model bias (°C) model bias (°C)

 Spatial distribution of model bias over the years 2018-2021
e CFSv2 = Climate Forecasting System v2, US operational dynamical model
* ECMWF = European Centre for Medium-Range Weather Forecasts, leading subseasonal model



Explaining ABC Improvements

* Question: When is ABC most likely to improve upon its input model?

* Answer: Opportunistic ABC workflow
e Based on the optimal credit assignment principle of Shapley (1953)

* Measures impact of explanatory variables on individual forecasts using Cohort
Shapley (Mase et al., 2019) and overall using Shapley effects (Song et al., 2016)

* Example: Explain ABC improvements for weeks 3-4 precipitation using
* 500 hPa geopotential height (HGT)

* Captures thermal structure, synoptic circulation y
 Madden Julian Oscillation (MJO) phase /

* 30-90 day oscillation in tropical atmosphere

* 10 hPa geopotential height (HGT)
e Captures polar vortex variability

* Sea ice concentration (ICEC) -
* Impacts near-surface temperatures

* Sea surface temperatures, multivariate ENSO mdex target month, .




Explaining ABC Improvements

U.S. Precipitation, weeks 3-4 (ABC-ECMWF vs. Debiased ECMWF)

0.004 -

0.003 -

0.002 -

Variable importance

0.001 -

Global importance of each variable in explaining skill improvement



Explaining ABC Improvements
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impact of
HGT on
ABC skill
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Explaining ABC Improvements
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Forecasts of Opportunity

C 1 C o1 . --- ABC-ECMWEF on high-impact dates /
e Ane ARG Debiased | 0:8] ~ Deb: ECMWE on ighvimpoctdates /
—— Opportunistic ABC on all dates )
0 or more 100.00 20.94 15.28 /
1 or more 95.93 20.99 14.84 =03 - '
2 or more 80.62 22.29 13.12 A
3 or more 58.61  23.56 12.00 0.2 —/\‘
4 or more 31.82 24.72 8.18 p
5 or more 1459 26.51 8.35 T 3 e
6 or more 6.46 29.72 10.55 0.1 SN =
7 or more 2.15 45.00 17.53

o 1 2 3 4 5 6 7

Minimum number of high-impact features

* Idea: Apply ABC opportunistically when multiple explanatory variables are
in high-impact state and use baseline debiased dynamical model otherwise

e Effectively defining windows of opportunity based on variables observable
at forecast issuance date



Adaptive Bias Correction for Improved Subseasonal Forecasting
arxiv.org/abs/2209.10666

SubseasonalClimateUSA: A Dataset for Subseasonal Forecasting and
Benchmarking arxiv.org/abs/2109.10399

Online Learning with Optimism and Delay
arxiv.org/abs/2106.06885
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Improving Subseasonal Forecasting iin the Western U.S.
with Machlﬁeq'l.*e‘arnmg anXiV. org/abs/1809 .07394
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https://arxiv.org/abs/2209.10666
https://arxiv.org/abs/2109.10399
https://arxiv.org/abs/2106.06885
https://arxiv.org/abs/1809.07394
https://www.flickr.com/photos/iip-photo-archive/23284228374/in/album-72157649529314553/
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